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Abstract—The bending theory of laminated plates presented by Ren is used to determine natural
frequencies and buckling loads of laminated plates. The theory aliows a parabolic distribution of
transverse shear stress through each layer. The transverse shear stresses are continuous across the
interfaces between layers. Frequencics and buckling foads of simply supported cross-ply laminated
plates are compared with exact results from three-dimensional elasticity theory. Results for simply
supported angle-ply laminated plates are also presented.

{. INTRODUCTION

In recent years, advanced composites have been widely used in many enginecring structures,
due to their high stiffness-to-weight ratio, thereby creating considerable interest in their
analysis. However, classical plate theory when used to analyse laminated plates often
underpredicts deflections and overpredicts natural frequencics and buckling loads. There-
fore, various refined plate theories have been developed. Amongst these are the Retssner -
Mindlin theory (Reissner, [945; Mindlin, 1951), high-order theory (Lo, 1Y77; Levinson,
1980 ; Murthy. 1981 ; Reddy, 1984) and Ambuartsumyan’s theory {(Ambartsumyan, 1969).
Recently a theory of laminated plates was presented (Ren, 1986a.b). On the basis of the
cylindrical bending of an anisotropic cantilever plate, an assumption regarding in-planc
displucements is made. The distributions of transverse shear stresses are parabolic through
cach layer, and these stresses are continuous at the interfaces between layers. Closed-form
solutions from the theory are compared with exuct solutions from elasticity theory and the
results ire in good agreement. In this paper, we use the theory to determine the natural
frequencies and buckling loads.

2. THEORY
2.1, Constitutive equations
For a plate of constant thickness, /1, which is composed of thin layers of anisotropic
material, constitutive equations for cach layer can be derived as discussed in Whitney and
Pagano (1970}, Under the assumption that each layer possesses a plane of elastic symmetry
paraliel to the x - plane, and that the normal stress 6. is neglected for deformation, the
constitutive equations for a layer can be written as

a, Qu Qi Quslfee
o.r=101: Qn Qul|ie =021 e n
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el p=leaw @
Te: Qis Ossd e
where Q,, are the plane-stress-reduced elastic constants.
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Fig. 1. Laminated plate.

2.2. Displacements and strains

The theory of laminated plates is based on the exact solution for the cylindrical bending
of an anisotropic laminated cantilever plate (Ren, 1986a. b). For the laminated plate shown
in Fig. 1, the transverse shear stresses can approximately be expressed as
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in which
B=3, (leo)S:(les) -8, (Qzﬁ)S:(Qkx 1)

C= Sl(leb)S:(Q’;l)—SI(Q’jI)SZ(QA;G)
R= SI(QI:I)SI(QI:N:)_SI(Q,(IG)SI(QI;())

S, = Z. %—'.%f(h,-—h._.). S = Z. 95332</z,:-h,1,1>

and where
(R ‘;Zvl Qulthi~h_)). S(Q%) = ig Q'elhi—h_\)
SHQ%) = ng%a(h,—h,.). SAQN) = f; Qi —h)
Q10 = T QU —h: ),

The terms B’. C” and R’ are similar to B, C and R with only Q%, and Q%, replaced by
Q%. and @%,. The index is used to identify layers and the bottom layer corresponds to
k=1.

From the constitutive eqns (2) and the relationships between displacements and strains,
the transverse shear strains for the kth layer can be written as

vio= b+ wk = R+ R
S I RE G (2) + RA i (2) + S (e (RS BE(D) + RYshE(2))
1 (6 D) RS (D) 0,0, 1) RE sk (2)

o=kt = RA T+ REGTR,

S ) (RAGdE(2) + R (2)) + &, (e ) (REALHE() + REshE()
+ 1. VRSS2 + (X )RS g (2) (4)

-
b

where
Rﬁ4 = ‘_‘”,’_]"' Rkss = Q’§4//k- Rﬁs = —Qﬁs/-/k. JE = l.‘qus.s—QlfssQﬁs-

We assume that the deflection, w, is constant through the thickness. Integrating eqns (4),
we have

(e r2) = —w s+ AL E + BEC)E A CEIM +GECI, +1y(x, 1)
tHers) = —w s+ AL E + BEC)E, + CEEN 4+ GE, +v0(x, p) (3)

where
Aua=jm;4m+nz¢cn¢+&

A(2) = J{Rﬁacfﬁ(:H Risdi(2)]) dz+ . (6)
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Expressions for BX(z). BX(z). etc.. are analogous to those given for A%(z) and 4} (z) in eqns
(6). Using the condition that the in-plane displacements are continuous between layers, the
constants ¢, ¢*. etc.. cun be determined. The constunts for the laver in which the midplane
is located are zero.

From the strain—displacement relations. the strains are given in matrix form as

& 00 &£ 0 B 0 CE0 GE 0 L 0O
=10 - 0 0 4 0 B 0 C 0 G- 010
ok 0 0 - A 45 B B CCCHGF G0 0 |
- [TIJA:}:/'D (7)
el 4. B. C. G:.
{A} = {AA‘: BA“_ CAN_ Gf] = [Tl e (%)
where
:;:/': = [_“'.\\ Wy -2“..\»‘ é\.\ ;:x.r i\.\ ‘;:1'.)'
"\,\ 'I\,r ’Il‘,\ 'l‘,x ”(‘,\ r!l,r ul\_r+l.“‘\‘]lr
:l:\: :[:\ ‘ZI' ',\ 'l\]l‘
2.3 Generalized stress strain relationships
Generalized strains and stress resultants have been introduced (Ren, 19864, b), so that
the equilibrium equations may be simply expressed in terms of generalized stress resultants,
which are defined as
R =D et U = [ ) 9)
where
- i
(D] = J (T RIQ LT )k d=0 [H] ZJ (T)'Q:(T: ) d:
2 b2
FL=(MoMoOM, PP, PP S S, S, SN N N
(P =V, Vo RORD
2.4, Equations of motion
Using Hamilton’s principle, we obtain the equations of motion
~r
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h 2 h. 2
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The term p, is the density of the Ath layer. A superposed dot denotes the derivative with

respect to time. £, and

0 A4 B CEGE 1O
[T = .

0 - 4 B* C* G 0 1

Integrating the expressions in eqn (10) by parts. and collecting the coefficients of dw, d¢,.
dZ,. 0. dny,. du, and e, we obtain the following equations of motion:
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Boundury conditions are of the form

w or Q’l + AI’L\'.J

w, or M,

. or P,
é’ll‘ Or P”‘
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g, or N,
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Fig. 2. Simply supported faminated plate.

where I 1s the boundary of the plate midplane. The terms » and s denote the lines normal
and tangential to the boundary, respectively, and
M, = M+ Mnl+2M 1,
M, = (M, —M)nn +M_ (ni—=n)
Q. =M, +M In+M,  +M )n,
Po=(P +P ) un+Pnl+pPou

)
n;

I’n\ = (,)r - l)\)”\”; + [)I»\H\: - l’\

3
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0 0 ¢
", +n,
cn dx Cy
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Also S,. S, 1. . and N, NVt iy, are defined by expressions analogous to P,. P,
Z,. S, respectively.
3 SIMPLY SUPPORTED PLATES
3L Simply supported cross-ply laminated plates
We consider a laminated plate of N layers, as shown in Fig. 2, in each of which the

axes are alternately oriented at 0 and 90 with respect to the x-axis. The cquations of
motion can be writlen as
Dl | “...nn' + 2([)12 + 2[)‘3)"..\\11 + D::“‘.D‘I‘II‘

- DI4S=\,,\\'K - (D2~l + 21)?5)5\‘_nr - (DI7 +2D}h):v.\u‘ - DZ7;LI‘H*

- DIH"\.rn\ - (DZN + ZD.“’)”\"\’N' - ([)I I +2D¥ l())'ls;\nr - D3 Vi er

~ D sty — (D2 2D Dty o — (D4 13+ 205 1000 00— D2 i,

= 1‘[(]“‘:+ AII 1 ‘.l.'.\\ + "‘I::“‘i.ll’ - “[l SE.\.\ - AI:JE.I.I - ‘l‘ll Sfi\.\ - 1":("7\'.\ ——1‘[|7l.il)‘\ - ‘/‘[ZK(:U.\'



Vibration and buckling of laminated plates 101
D o +(D2y+2D55)w 4,
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—(Dy o+ D v Mo = Do ot = Do ese HHaan,
—(Dyga+t Dy g =D ialo — Do
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Dyaw o (D 42D 000w
=Dy 28 =Dy i = (Dq 12 Do 13S0
—Dyifne=Do v =D 12+ D

—Dyyiattoe = Digiatto,, = (D + Digis)to

= M i, — My & — M s3if, — M4y

(D 342Dy 0w+ Daaw
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—(Disis+ Do g —Digaton— Dy istoy
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Assuming that the plate is simply supported in such a4 manner that normal displacement is
admissible, but the tangential displacement is not, the following boundary conditions arc
appropriate:
w(0,y) = wlw.y) = w(x,0) = w(x,p) =0
MA0,p) =M (a.y) = M, (x.0) = M (x.h) =0 (13)

$(0.3) = Sa. 1) = S (%, 0) = S (x,h) =0
PAO.V)=PAa.y)=P(x.0)=Px.h)=0 (14)
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n0.y) =na.y) =n(x.0) =nlx.h) =0
S0.M=S(a.v)=5(x.0)=S(x.b)=0 (15)

Col0.v) = rold. v) = uy(x.0) = u,(x.h) =0
NOV)=N(a.v)=N(x.0)= N (x.h =0 (16)

The following form of solutions for (w. .. .. 5. 1, u,. ty) satisfies boundary conditions
(13)-(16).

T
W = Z W, SIN XX SIN /)’1 e
= |
‘
o= Y o cos xxsin fre ™
mn=1
i" = Z :Hnu SIN XX COs [f‘ @
man=1
Ny =3 Huwe COS XX SN fr e 0
=
.
N, = - oo Sin AN COS /{l C 1t
ot~ |
Uy =Y Uy COS XV SIN f1re
o - L
Po = 2.. Comm SIN LY COS /;l e o a7

man |

where 1 = mn/u and ff = nr/b. Substituting eqns (17) into egns (12) and collecting the
cocllicients, we have

({C} =[G, ] ix} = |0} (18)
where

[ IS . . 4 -4 . T
X = D Comn Somn Mo Momn Honn Ut

for any fixed m and n. The matrix [G,] refers to the mass matrix in the case of [ree vibration
and the parameter o refers to the corresponding frequency.

For buckling, the right-hand sides of egns (11) should be moditied. The right-hand
side from the sccond to the seventh are equal to zero, and that of the first is cqual to

—Now, =2N w =N (19)

where V. N, and N, arc the in-plance forees.
Substituting eqns (17) into the moditied eqns (12) and letting the coeflicient determinant
be equal to zero for any fixed m and i, gives the critical toads.
Numerical results for cross-ply laminated plates which consist of equal thickness layers
arc comparcd with the results from three-dimensional theory. The data used here are taken
from Noor (1973, 1975) and the governing equations of this theory are given by Srinivas
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Table [. Compurison of natural frequencies, & = why/(p;Ey). for simply supported cross-ply
square laminated plates witha A =5

EL:"E!'
Lumination NLF 3 10 20 30 40
Three-dimensional elasticity (Noor. 1973)

2 2.5031 2.7938 3.069% 3.2705 34250
Antisvmmetric 4 2.6182 32578 37622 4.0660 42719
‘ ’ & 2.6:440 3.3657 39359 4.2783 45091
10 2.65883 3.4250 4.0337 44011 4.6498
3 26474 3.2841 3.8241 4.1089 4.3006
Symmetric 3 o7 14089 39792 4.3140 43374
9 2.66:40 34432 40547 44210 $.6679

Present
2 2428 27769 3.0528 3.2529 34072
Antisymmetric 4 25943 32296 RNATH 4.0352 42418
T 6 26181 33346 39015 4.2426 44730
10 26308 33917 39969 4.3631 4.6120
3 2.5560 3.2586 3.6898 3931t 4.0923
Symmetric S 2.6306 3.3538 3.8032 4.2082 44191
9 2.6356 R R) 3.9995 4.3582 4.6009

T Number of layers.

et ol (1970) and Guz (1971). The materiad cocflicients of an individual layer are taken to
be those typical of high fibrous composites, namely

(;l ¥ (;I"l’ & c
L= ().(). L= 0). Vip == Vpp 2= 0‘23 (20)
[l{* {'.;'
where subseript Lorefers to the direction of the fibre, subscript T refers to the transverse
dircction, and v is Poisson’s ratio, The plates are free trom loads for free vibration and
subjected to normal edge forees on sides v = 0, ¢ for buckling.

3.2, Simply supported angle-ply laminated plates

We now consider a rectangular angle-ply laminated plate, as shown in Fig. 2, having
an even number of layers with cach ply aliernately oriented at +0 and —# to the x-uxis
of the plate. From egns (1), the equilibrium equations, in terms of displacements, for
antisymmetric angle-ply liminated plates are the following :

Table 2. Comparison of critical buckling coceflicients, ¥ = ¥ b*(E ') tor simply supported cross-
ply squarre Tnminated plates with «/fr = 10

EE,
Lamination NL R) 10 20 30 40
Three-dimenstonal clasticity (Noor, 1975)
2 3.6U4% 6.1181 78196 93746 10.8167
N 4 s 9.0164 13.7429 17.7829 21,279
Antisymmetric 6 52613 9.6051 150014 19.6394 23668
11§ 33159 99134 15.6685 206347 24 9636
3 5.3044 9.7621 15.0191 19.3040 22.8%07
Symmetric 3 5.325% 9.9603 15.6527 20.4663 24,5929
9 53352 10.0417 159153 209614 253436
Present
2 4,7743 6.2494 79953 9.3859 11.059
L i 4 5.2449 9.1392 13.9138 17.9850 21.5028
Antisymmetric 6 53368 9.7238 15.1648 19.8291 238738
1) 53843 10.0298 15.8274 208175 25.1591
3 5.3882 98273 14.875 18.8502 220785
Symmetric § 54023 10.0530 15.6619 20.3312 24,2892

9 54085 10.1533 16.0303 210422 35.3733
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Table 3. Non-dimensionalized fundamental frequencies. & = 100wh,/ (p/E7). of angle-
ply square laminated plates of two layers

g E Er
wh (deg) 3 10 30 30 40
4 5 26.270 32592 36.644 38.782 40.132
15 26.098 31.578 35.002 36.902 38.174
30 25830 30.850 34.324 36.442 37912
43 25758 21.006 34.690 36.946 38.508
10 s 7.2398 9.7159 11.839 13.220 [4.211
15 7.1826 9.2293 10.823 11.853 12618
30 7.0954 8.8670 10.369 466 12,338
45 7.0722 8914 10.504 11682 12.619
100 5 0.0752 0.1052 0.1354 0.1387 0.1778
15 0.0746 0.0988 0.1200 0.1353 0.1476
30 0.0736 0.0941 0132 0.1286 0.1421
435 0.0734 0.0945 01148 Q1313 0.1461

Assuming that the plate is simply supported by smooth pins allowing tangential dis-
placement along the bounduries, in addition to eqns (13)-(15). conditions (16) are changed
to

{0, ¥) = wupla. ) = (X, 0) = ro{x.h) = 0
N (x.0) = N (6. h) = N (0.3) = N (a.y) = 0. (22
The boundary conditions and the governing cquations are satisficd by the displacement
ticlds

y = Z U SIN 2V COS fiy ¢

- L

st

.
Py = Y lgaw €OS %X sin fir ¢

X

terat

and the remainder being the sume as in eqns (17). This kind of simply supported anti-
symmetric angle-ply laminated plate was analysed from classical plate theory by Whitney
(1969) and Whitney and Leissa (1969).

Using a similar procedure to that for cross-ply laminates, a similar set of equations is
obtained. Numerical results are presented in Tables 3 and 4. The thickness of cach layer is
the same and the material coeflicients equal to those in egns (20).

Table 4. Non-dimensionalized critical coeflicients, § = VA7 (£h "), of angle-ply square
taminated plates of two layers

o EE,
ailt {deg.) 3 14 20 0 40

4 5 4.5606 69770 8.8040 9.8608 10.5629

15 45111 6.6105 $.1470 9.0692 9.7101

30 44379 6.34%9 7.8457 88264 9.5368

45 44206 6.4240 8.0145 9.0620 9.8200

10 5 5.3890 9.7020 144174 18.0059 20.8422

15 5.3081 8.7884 12.1370 14.6087 16.5880

30 50872 8.1269 11.1235 13.6051 15.7517

45 5.1561 8.2138 11.3151 14,1103 164558

100 5 5.7350 11.2040 18.5844 25,5119 32,0411

15 5.6386 9.8921 14,5982 18.5419 22,0682

30 5.4942 8.9669 12.9770 16.7706 20.4793

45 5.4566 9.0570 13.3545 17.5169 21.6384
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4. CONCLUSIONS

The laminated plate theory presented by Ren is used to analyse laminated plates for
free vibration and buckling. Closed-form solutions for cross-ply simply supported plates
are compared with three-dimensional elasticity solutions, and are in good agreement.
Closed-form results for angle-ply plates. which do not have exact solutions. are also
presented. From these, it is shown that the present bending theory of laminated plates is
suitable for dyvnamic and buckling analysis.
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